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Abstract
By modeling a linear, anisotropic and inhomogeneous magnetodielectric
medium with two independent sets of harmonic oscillators, the electromagnetic
field is quantized in such a medium. The electric and magnetic polarizations
of the medium are expressed as linear combinations of the ladder operators
of the harmonic oscillators modeling the magnetodielectric medium. Maxwell
and the constitutive equations of the medium are obtained as the Heisenberg
equations of the total system. The electric and magnetic susceptibility tensors
of the medium are obtained in terms of the tensors coupling the medium with the
electromagnetic field. The explicit forms of the electromagnetic field operators
are obtained for a translationally invariant medium.

PACS number: 12.20.Ds

1. Introduction

One method of quantizing the electromagnetic field in the presence of an absorptive medium
is known as the Green function method [1–8]. In this method by adding the noise electric
and magnetic polarization densities to the classical constitutive equations of the medium,
these equations are taken as definitions of electric and magnetic polarization operators. The
noise polarizations are related to two independent sets of bosonic operators. Combination of
Maxwell and the constitutive equations in the frequency domain gives the electromagnetic field
operators in terms of the noise polarizations and the classical Green tensor. The commutation
relations are imposed on the bosonic operators such that the commutation relations between
electromagnetic field operators in the magnetodielectric medium become identical to those
in free space. Another interesting quantization scheme of the electromagnetic field in the
presence of an absorptive dielectric medium is known as the damped polarization model
which is based on the Hopfield model of a dielectric [9], where the polarization of the
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dielectric is represented by a damped quantum field [10]. In the damped polarization model
[11–13], the electric polarization of the medium is represented by a quantum field and the
absorptivity character of the medium is described by the interaction between the polarization
with a heat bath containing a continua of harmonic oscillators. In this method a canonical
quantization is formulated for the electromagnetic field and the medium. The dielectric
function of the medium is obtained in terms of the coupling function of the heat bath and
the electric polarization, such that it satisfies the Kramers–Kronig relations [14]. Recently
Raabe et al [15] have represented a unified method of quantizing the electromagnetic field in
the presence of an arbitrary linear medium based on a general nonlocal conductivity tensor and
using a single set of appropriate bosonic operators. This formalism recovers and generalizes
the previous quantization schemes for diverse classes of linear media. In particular, the
quantization of the electromagnetic field in the presence of a magnetodielectric medium is a
limiting case for a weakly spatially dispersive medium in this scheme. In the present work,
we generalize our approach [16, 17] to quantizing the electromagnetic field in an anisotropic
magnetodielectric medium with a spatially and temporarily dispersive property. In this case,
the electric and magnetic polarizations are dependent on the macroscopic electric and magnetic
fields inside the medium in a nonlocal way with respect to both the position and time. The
electric and magnetic polarization densities of the medium are defined as linear combinations
of the ladder operators of the medium. The coefficients of these linear expansions are coupling
tensors which couple the medium with the electromagnetic field. The electric and magnetic
susceptibility tensors of the medium are obtained in terms of the coupling tensors. By
using a Hamiltonian in which the electric and magnetic polarizations minimally couple to
the displacement and magnetic fields respectively, both the Maxwell and the constitutive
equations of the medium can be obtained as the Heisenberg equations of the total system.
Finally, using the Laplace and Fourier transformations, we obtain the spacetime dependence
of electromagnetic field operators in terms of the annihilation and creation operators of the
oscillators modeling the medium.

2. A quantization scheme

In order to quantize the electromagnetic field in the presence of an anisotropic
magnetodielectric medium, we enter the medium directly in the process of quantization by
modeling it with two independent fields namely E and M quantum fields [16]. The E and
M fields describe polarizability and magnetizability of the medium, respectively. This means
that in our approach the electric and magnetic polarization densities of the medium are defined
respectively as linear combinations of the ladder operators of the E and M quantum fields.
We use the Coulomb gauge in this quantization scheme and do the quantization in unbounded
space and in the absence of external charges. Generalization of the quantization inside a cavity
with a definite volume and with known boundary conditions or in the presence of external
charges is straightforward [17].

Applying the Coulomb gauge, the quantum vector potential can be expanded in terms of
plane waves as

�A(�r, t) =
∫

d3�k
2∑

λ=1

√
h̄

2(2π)3ε0ω�k

[
a�kλ(t) eı�k·�r + a

†
�kλ

(t) e−ı�k·�r]�e�kλ (1)

where ω�k = c|�k|, ε0 is the permittivity of the vacuum and �e�kλ(λ = 1, 2) are unit polarization
vectors which satisfy the orthogonality relations

�e�kλ · �e�kλ′ = δλλ′ , �e�kλ · �k = 0. (2)
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Operators a�kλ(t) and a
†
�kλ

(t) are annihilation and creation operators of the electromagnetic field
and satisfy the following equal time commutation rules:[

a�kλ(t), a
†
�k′λ′(t)

] = δ(�k − �k′)δλλ′ . (3)

Quantization in the Coulomb gauge usually needs resolution of a vector field in its transverse
and longitudinal parts. Any vector field �F(�r) can be resolved into two components, transverse
and longitudinal components which are denoted respectively by �F⊥ and �F ‖ [18, 19]. The
transverse part satisfies the Coulomb condition ∇ · �F⊥ = 0 and the longitudinal component is
a conservative field ∇ × �F ‖ = 0. In the absence of external charges the displacement field is
purely transverse and can be expanded in terms of the plane waves as

�D(�r, t) = −ıε0

∫
d3�q

2∑
λ=1

√
h̄ω�k

2(2π)3ε0

[
a
†
�kλ

(t) e−ı�k·�r − a�kλ(t) eı�k·�r]�e�kλ, (4)

where µ0 is the permeability of the vacuum. From (3) the commutation relations between the
components of the vector potential and the displacement field clearly are

[Al(�r, t),−Dj(�r ′, t)] = ıh̄δ⊥
lj (�r − �r ′), (5)

where δ⊥
lj (�r − �r ′) = 1

(2π)3

∫
d3�k eı�k·(�r−�r ′)

(
δlj − klkj

|�k|2
)

is the transverse delta function.
Now we enter the medium in the process of quantization taking its contribution in

the Hamiltonian of the total system (electromagnetic field plus medium) as the sum of the
Hamiltonians of the E and M quantum fields

Hd = He + Hm,

He(t) =
3∑

ν=1

∫
d3�q

∫
d3�kh̄ω�kd

†
ν(

�k, �q, t)dν(�k, �q, t),

Hm(t) =
3∑

ν=1

∫
d3�q

∫
d3�kh̄ω�kb

†
ν(

�k, �q, t)bν(�k, �q, t),

(6)

where He and Hm are the Hamiltonians of the E and M fields respectively. Quantum
dynamics of a dissipative harmonic oscillator interacting with an absorptive environment can
be investigated by modeling the environment by a continuum of harmonic oscillators [20–28].
In the case of quantization of the electromagnetic field in the presence of a magnetodielectric
medium, the electromagnetic field is the main dissipative system and the medium plays the
role of the absorptive environment. Here the electromagnetic field contains a continuous set
of harmonic oscillators labeled by �k and ν = 1, 2. Therefore to each harmonic oscillator
of the electromagnetic field a continuum of oscillators should be corresponded. In the
present scheme, to each harmonic oscillator of the electromagnetic field labeled by �k and
ν, we have corresponded two continuous sets of harmonic oscillators defined by the ladder
operators dν(�k, �q, t), d†

ν(
�k, �q, t) and bν(�k, �q, t), b†

ν(
�k, �q, t) which are to describe the electric

and magnetic properties of the medium respectively and satisfy the equal time commutation
relations [

dν(�k, �q, t), d
†
ν ′( �k′, �q ′, t)

] = δνν ′δ(�k − �k′)δ(�q − �q ′),[
bν(�k, �q, t), b

†
ν ′( �k′, �q ′, t)

] = δνν ′δ(�k − �k′)δ(�q − �q ′).
(7)

Summation on ν = 3 in (6) is necessary, because as we will see the polarization densities of
the medium are defined in terms of the ladder operators of the E and M fields and opposite
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to the vector potential the polarization densities are not purely transverse. In relation (6)
ω�k is called the dispersion relation of the magnetodielectric medium and can be chosen simply
as ω�k = c|�k| [16, 17]. It is remarkable that, although the medium is anisotropic in its electric
and magnetic properties, we do not need take the dispersion relation as a tensor. In fact the
dispersion relation has not any physical meaning here, and the Hamiltonian of the medium as
(6) is merely a mathematical formulation leading to the correct form of the equation of motion
of the total system, that is Maxwell and the constitutive equations of the magnetodielectric
medium. The anisotropic behavior of the medium is merely expressed in definitions of
the electric and magnetic polarization densities, denoted by �P and �M respectively. These
polarization densities are written in terms of the ladder operators of the E and M fields
respectively as

Pi(�r, t) =
3∑

ν=1

∫
d3�q√
(2π)3

∫
d3�k

∫
d3r ′fij (ω�k, �r, �r ′)[dν(�k, �q, t) ei�q· �r ′

+ h.c.] vj
ν (�q), (8)

Mi(�r, t) = ı

3∑
ν=1

∫
d3�q√
(2π)3

∫
d3�k

∫
d3r ′gij (ω�k, �r, �r ′)[bν(�k, �q, t) eı�q· �r ′ − h.c.] sj

ν (�q), (9)

where

�vν(�q) = �e�qν, ν = 1, 2 (10)

�sν(�q) = q̂ × �eν�q, ν = 1, 2 (11)

�v3(�q) = �s3(�q) = q̂ = �q
|�q| . (12)

In (8) and (9), the tensors fij (ω�k, �r, �r ′) and gij (ω�k, �r, �r ′) are real-valued coupling tensors
which couple the electromagnetic field with the medium. The coupling tensors play the key
role in this method and are a measure for the strength of the polarizability and magnetizability
of the medium macroscopically, so that we will see that the electric and magnetic susceptibility
tensors of the magnetodielectric medium are obtained in terms of these coupling tensors. Also,
the explicit forms of the noise polarization densities are obtained in terms of the coupling
tensors and the ladder operators of the E and M fields at t = 0. It can be shown that when
the medium tends to a nonabsorbing one, the noise densities tend to zero and this quantization
scheme reduces to the usual quantization in these media [16].

Now the total Hamiltonian, i.e., electromagnetic field plus the E and M quantum fields
can be proposed as one of the following forms:

H̃ (t) =
∫

d3r

[
[ �D − �P ]2

2ε0
+

[∇ × �A − µ0 �M]2

2µ0

]
+ He + Hm, (13)

˜̃H(t) =
∫

d3r

[
[ �D − �P ]2

2ε0
+

[∇ × �A]2

2µ0
− ∇ × �A · �M

]
+ He + Hm, (14)

in which the electric and magnetic polarizations interact minimally with the displacement
field and the magnetic field, respectively. Using both the Hamiltonians (13) and (14) gives
us correctly the Maxwell and constitutive equations of the manetodielectric medium as the
Heisenberg equations of the total system. Here we use the Hamiltonian (13) since it is
easier to solve the coupled Maxwell and constitutive equations especially when the medium
is translation invariant in its electric and magnetic properties.
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3. Heisenberg equations

3.1. Maxwell equations

The Heisenberg equations for the fields �A and �D are

∂ �A(�r, t)
∂t

= ı

h̄
[H̃ , �A(�r, t)] = −

�D(�r, t) − �P ⊥(�r, t)
ε0

, (15)

∂ �D(�r, t)
∂t

= ı

h̄
[H̃ , �D(�r, t)] = ∇ × ∇ × �A(�r, t)

µ0
− ∇ × �M(�r, t), (16)

where �P ⊥ is the transverse component of �P . If we define the transverse electric field �E⊥,
magnetic induction �B and magnetic field �H as

�E⊥ = −∂ �A
∂t

, �B = ∇ × �A, �H =
�B

µ0
− �M. (17)

The Heisenberg equations (15) and (16) can be rewritten as

�D = ε0 �E⊥ + �P ⊥, (18)

∂ �D
∂t

= ∇ × �H, (19)

which are respectively the definition of the displacement field and the macroscopic Maxwell
equation in the absence of external charges. In the Coulomb gauge we can take the longitudinal
component of the electric field as �E‖ = − �P ‖

ε0
. According to the definitions (17) we have

∇ × �E = −∂ �B
∂t

. (20)

3.2. Constitutive equations of the magnetodielectric medium

Using commutation relations (7) we easily find the Heisenberg equations for operators
dν(�k, �q, t) and bν(�k, �q, t) as

ḋν(�k, �q, t) = ı

h̄
[H̃ , dν(�k, �q, t)] = −ıω�kdν(�k, �q, t)

+
ı

h̄
√

(2π)3

∫
d3r ′

∫
d3r ′′ e−ı�q·�r ′′

fij (ω�k, �r ′, �r ′′)Ei(�r ′, t) vj
ν (�q), (21)

ḃν(�k, �q, t) = ı

h̄
[H̃ , bν(�k, �q, t)] = −ıω�kbν(�k, �q, t)

+
µ0

h̄
√

(2π)3

∫
d3r ′

∫
d3r ′′ e−ı�q·�r ′′

gij (ω�k, �r ′, �r ′′)H i(�r ′, t)sj
ν (�q). (22)

These equations can be solved formally as

dν(�k, �q, t) = dν(�k, �q, 0) e−ıω�k t +
ı

h̄
√

(2π)3

∫ t

0
dt ′ e−ıω�k(t−t ′)

×
∫

d3r ′
∫

d3r ′′ e−i�q·�r ′′
fij (ω�k, �r ′, �r ′′)Ei(�r ′, t ′)vj

ν (�q), (23)

5
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bν(�k, �q, t) = bν(�k, �q, 0) e−ıω�k t +
µ0

h̄
√

(2π)3

∫ t

0
dt ′ e−ıω�k(t−t ′)

×
∫

d3r ′
∫

d3r ′′ e−i�q·�r ′′
gij (ω�k, �r ′, �r ′′)H i(�r ′, t ′)sj

ν (�q). (24)

Substituting (23) into (8) and (24) into (9) and using the completeness relations

3∑
ν=1

ei
ν�qe

j

ν�q =
3∑

ν=1

si
ν�qs

j

ν�q = δij (25)

give us the constitutive equations of the magnetodielectric medium which relate the electric
and magnetic polarization densities of the medium to the macroscopic electric and magnetic
fields respectively as

Pi(�r, t) = PNi(�r, t) + ε0

∫ |t |

0
dt ′

∫
d3r ′χe

ij (�r, �r ′, |t | − t ′)Ej (�r ′,±t ′), (26)

Mi(�r, t) = MNi(�r, t) +
∫ |t |

0
dt ′

∫
d3r ′χm

ij (�r, �r ′, |t | − t ′)Hj (�r ′,±t ′), (27)

where the upper (lower) sign corresponds to t > 0 (t < 0) and �E = − ∂ �A
∂t

− �P ‖
ε0

is the total
electric field. The memory tensors

χe(�r, �r ′, t) =
⎧⎨
⎩

8π

h̄c3ε0

∫ ∞

0
dωω2 sin ωt

∫
d3r ′′[f (ω, �r, �r ′′) · f t (ω, �r ′, �r ′′)] t > 0

0 t � 0
(28)

and

χm(�r, �r ′, t) =
⎧⎨
⎩

8πµ0

h̄c3

∫ ∞

0
dωω2 sin ωt

∫
d3r ′′[g(ω, �r, �r ′′) · gt (ω, �r ′, �r ′′)] t > 0

0 t � 0
(29)

are respectively the electric and magnetic susceptibility tensors of the magnetodielectric
medium which have been obtained in terms of the coupling tensors f , g and their transpositions
f t , gt . For a medium with a definite pair of tensors χe and χm it is possible to solve
equations (28) and (29) in terms of the coupling tensors f and g using a type of eigenvalue
problem [15]. The operators �P N and �MN in (26) and (27) are the noise electric and magnetic
polarization densities and their explicit forms are given by

PNi(�r, t) =
3∑

ν=1

∫
d3�q√
(2π)3

∫
d3�k

∫
d3r ′fij (ω�k, �r, �r ′)

× [dν(�k, �q, 0) e−ıω�k t+ı�q· �r ′
+ h.c.]vj

ν (�q), (30)

MNi(�r, t) = i

3∑
ν=1

∫
d3�q√
(2π)3

∫
d3�k

∫
d3r ′gij (ω�k, �r, �r ′)

× [bν(�k, �q, 0) e−ıω�k t+ı�q· �r ′ − h.c.]sj
ν (�q). (31)

From (28) and (29) it is clear that for a given pair of the susceptibility tensors χe and χm, the
solutions of the relations (28) and (29) for the coupling tensors f and g are not unique. In fact

6
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for a given pair of χe and χm, if the tensors f and g satisfy equations (28) and (29), then the
coupling tensors

f ′(ω, �r, �r ′) =
∫

d3s f (ω, �r, �s) · At(ω, �s, �r ′)

g′(ω, �r, �r ′) =
∫

d3s g(ω, �r, �s) · At(ω, �s, �r ′)
(32)

for any tensor A where satisfy the orthogonality relation∫
d3r ′′A(ω, �s, �r ′′) · At(ω, �s ′, �r ′′) = Iδ(�s − �s ′) (33)

also satisfy equations (28) and (29). Although this affects the spacetime dependence of
the noise polarizations and therefore the spacetime dependence of the electromagnetic field
operators but all of these are equivalent. This means that various choices of the coupling
tensors f and g satisfying (28) and (29), for a given pair of the susceptibility tensors χe

and χm, do not affect the commutation relations between the electromagnetic field operators
and hence the physical observables. This subject becomes more clear if we compute the
commutation relations between the components of the temporal Fourier transformations of
the noise polarizations �P N and �MN using commutation relations (7) and obtain[

P̂ Ni(�r, ω), P̂
†
Nj (

�r ′, ω′)
] = h̄ε0

π
Im

[
χ̂ e

ij (�r, �r ′, ω)
]
δ(ω − ω′)

[
M̂Ni(�r, ω), M̂

†
Nj (

�r ′, ω′)
] = h̄

µ0π
Im

[
χ̂m

ij (�r, �r ′, ω)
]
δ(ω − ω′),

(34)

where χ̂ e and χ̂m are respectively the temporal fourier transformations of the tensors χe and
χm. The commutation relations (34) are the generalization of those in [8] for an anisotropic
magnetodielectric medium with spatial–temporal dispersion. For a given pair of the tensors χe

and χm, various choices of the coupling tensors f and g satisfying the relations (28) and (29)
do not affect the commutation relations (34) and therefore the commutation relations between
the electromagnetic field operators. Therefore all of the field operators which are obtained
with a definite pair of the susceptibility tensors χe and χm but with different coupling tensors
satisfying (28) and (29) are equivalent.

It is clear from (30) and (31) that the explicit forms of the noise polarization densities
are known. Also, because the coupling functions f, g are common factors in the noise
densities �P N, �MN and the susceptibility tensors χe, χm, it is clear that the strength of the
noise fields is dependent on the strength of χe and χm which describe the dissipative character
of the magnetodielectric medium. When the medium tends to a nonabsorbing one the noise
polarization tends to zero and this quantization method is reduced to the quantization in the
presence of a nonabsorbing medium [16].

It should be noted that the time derivatives of the polarization fields ∂ �P
∂t

and ∂ �M
∂t

are
continuous at time t = 0 although the absolute value |t | appears in the constitutive equations
(26) and (27). In fact another solution for the Heisenberg equation (21) can be written as

dν(�k, �q, t) = din
ν (�k, �q) e−ıω�k t +

ı

h̄
√

(2π)3

∫ t

−∞
dt ′ e−ıω�k(t−t ′)

×
∫

d3r ′
∫

d3r ′′ e−i�q·�r ′′
fij (ω�k, �r ′, �r ′′)Ei(�r ′, t ′)vj

ν (�q), (35)

where din
ν (�k, �q) are some time-independent annihilation operators which satisfy the same

commutation relations (7). If we find dν(�k, �q, 0) from equation (35) and substitute it into the

7
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noise polarization field �P N(�r, t) given by (30), we deduce

PNi(�r, t) = P in
Ni(�r, t) + ε0

∫ t

−∞
dt ′

∫
d3r ′χe

ij (�r, �r ′, t − t ′)Ej (�r ′, t ′)

− ε0

∫ |t |

0
dt ′

∫
d3r ′χe

ij (�r, �r ′, |t | − t ′)Ej (�r ′,±t ′), (36)

where the susceptibility tensor χe is given by (28) and �P in
N is the same as �P N with the exception

that the annihilation operators dν(�k, �q, 0) should be replaced by din
ν (�k, �q). Now substituting

�P N from (36) into (26) gives us the expression

Pi(�r, t) = P in
Ni(�r, t) + ε0

∫ t

−∞
dt ′

∫
d3r ′χe

ij (�r, �r ′, t − t ′)Ej (�r ′, t ′) (37)

for the polarization field �P which is valid for both positive and negative times. From (37) it is
clear that ∂ �P

∂t
and accordingly the electromagnetic field operators are continuous at t = 0. One

can apply the constitutive equation (37) and a similar equation for the magnetic polarization �M
and use the temporal Fourier transformation, or apply the constitutive equations (26) and (27)
and use the Laplace transformation, to solve the coupled constitutive and Maxwell equations.
Here we prefer the later, since in this way it is easier to show the limiting cases in the absence
of any medium or in the presence of a nonabsorbing medium [16, 17]. Using the forward and
backward Laplace transformations and applying the constitutive equations (26) and (27), we
can obtain the explicit forms of the electromagnetic operators for both negative and positive
times which are continuous at t = 0 [12].

4. The solution of the Heisenberg equation

In this section we solve the coupled Maxwell and constitutive equations (18)–(20), (26) and
(27) for a translationally invariant medium, that is for a medium that its electric and magnetic
susceptibility tensors are dependent on the difference �r − �r ′. For such a medium we can easily
obtain the explicit forms of the electromagnetic field operators for both positive and negative
times by the spatial Fourier transformation and the temporal Laplace transformation. In this
section we solve the coupled Maxwell and constitutive equations for positive times using the
forward Laplace transformation. The solution of the Heisenberg equations for negative times

can be found similarly from the backward Laplace transformation [12]. Let us define �̂F for
any vector field F(�r, t) by

�̂F(�k, ρ) =
∫

d3r

∫ ∞

0
dt �F(�r, t) e−ı�k·�r−ρt . (38)

Now applying such a transformation on both the sides of equations (18), (26) and (27), together
with the Maxwell equations (19) and (20), and then their combination for a translationally
invariant medium we find

− ı�k × �̂E = −ρµ̂(�k, p) �̂H − µ0ρ �̂MN(�k, ρ) + �B(�k, 0),

− ı�k × �̂H = ρε̂(�k, ρ) �̂E + ρ �̂P N(�k, ρ) − �D(�k, 0),

(39)

where �B(�k, 0), �D(�k, 0) are respectively the spatial Fourier transformations of �B(�r, 0) and
�D(�r, 0) and ε̂ = ε0(1 + χ̂ e), µ̂ = µ0(1 + χ̂m) are the transformations introduced in (38) for

8
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the permittivity and permeability tensors of the medium. Equations (39) can be written in a
compact form by using a matrix notation as follows:


(�k, ρ)

⎡
⎣ �̂E

�̂H

⎤
⎦ =

⎡
⎣µ0ρ �̂MN − �B(�k, 0)

−ρ �̂P N + �D(�k, 0)

⎤
⎦ , (40)

where 
(�k, ρ) is a 6 × 6 matrix defined by


(�k, ρ) =
[

O(�k) −ρµ̂(�k, ρ)

ρε̂(�k, ρ) O(�k)

]
, (41)

and

O(�k) =

⎡
⎢⎣

0 −ık3 ık2

ık3 0 −ık1

−ık2 ık1 0

⎤
⎥⎦ . (42)

Finally, substituting �̂P N(�k, ρ), �̂MN(�k, ρ), �D(�k, 0) and �B(�k, 0) into the right-hand side of (40)
using the expansions (1), (4), (30) and (31) and multiplying equation (40) on the left-hand
side by 
−1(�k, ρ), we find

Ei(�r, t) = ı

2∑
λ=1

∫
d3k

√
h̄ω�kε0

2(2π)3
[γij (�k, t)a�kλ(0) eı�k·�r − h.c.]ej

�kλ

+ ı

2∑
λ=1

∫
d3k

√
h̄ω�kµ0

2(2π)3
[ξij (�k, t)a�kλ(0) eı�k·�r − h.c.]sj

�kλ

+ ı

3∑
ν=1

∫
d3q

∫
d3k√
(2π)3

[ζij (ω�q, �k, t)bν(�q, �k, 0) eı�k·�r − h.c.]sj

�kν

+
3∑

ν=1

∫
d3q

∫
d3k√
(2π)3

[ηij (ω�q, �k, t)dν(�q, �k, 0) eı�k·�r + h.c.]ej

�kν
, (43)

where ω�k = c|�k|, ω�q = c|�q| and we have used 
(−�k, ρ) = 
∗(�k, ρ). The tensors γ , ξ , ζ and
η are given by

γij (�k, t) = L−1
[
[
(�k, ρ)]−1

i(j+3)

]
,

ξij (�k, t) = −L−1
[
[
(�k, ρ)]−1

ij

]
,

ζij (ω�q, �k, t) = µ0L
−1

[
ρ

ρ + ıω�q

3∑
l=1

(
[
(�k, ρ)]−1

il g
lj
(ω�q, �k)

)]
,

ηij (ω�q, �k, t) = −L−1

[
ρ

ρ + ıω�q

3∑
l=1

(
[
(�k, ρ)]−1

i(l+3)f lj
(ω�q, �k)

)]
,

(44)

where L−1 {f (ρ)} denotes the inverse Laplace transform of f (ρ) and the tensors f , g are
given by

f
ij
(ω, �k) =

∫
d3rfij (ω, �r) e−ı�k·�r g

ij
(ω, �k) =

∫
d3rgij (ω, �r) e−ı�k·�r . (45)

9
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Similarly for the magnetic field �H we obtain

Hi(�r, t) = ı

2∑
λ=1

∫
d3k

√
h̄ω�kε0

2(2π)3
[γ̃ij (�k, t)a�kλ(0) eı�k·�r − h.c.]ej

�kλ

+ ı

2∑
λ=1

∫
d3k

√
h̄ω�kµ0

2(2π)3
[ξ̃ij (�k, t)a�kλ(0) eı�k·�r − h.c.]sj

�kλ

+ ı

3∑
ν=1

∫
d3q

∫
d3k√
(2π)3

[ζ̃ij (ω�q, �k, t)bν(�q, �k, 0) eı�k·�r − h.c.]sj

�kν

+
3∑

ν=1

∫
d3q

∫
d3k√
(2π)3

[η̃ij (ω�q, �k, t)dν(�q, �k, 0) eı�k·�r + h.c.]ej

�kν
, (46)

where

γ̃ij (�k, t) = L−1[[
(�k, ρ)]−1
(i+3)(j+3)

]
,

ξ̃ij (�k, t) = −L−1
[
[
(�k, ρ)]−1

(i+3)j

]
,

ζ̃ij (ω�q, �k, t) = µ0L
−1

[
ρ

ρ + ıω�q

3∑
l=1

(
[
(�k, ρ)]−1

(i+3)lglj
(ω�q, �k)

)]
,

η̃ij (ω�q, �k, t) = −L−1

[
ρ

ρ + ıω�q

3∑
l=1

(
[
(�k, ρ)]−1

(i+3)(l+3)f lj
(ω�q, �k)

)]
.

(47)

Expressions (43)–(47) and the commutation relations (3) and (7) show that the commutation
relations between components of the operators �E and �H are independent of the various choices
of the coupling tensors f and g satisfying the relations (28) and (29) for a given pair of the
tensors χe and χm. Finally having the fields �E and �H we can obtain the polarization fields �P
and �M from the constitutive equations (26) and (27).

It should be pointed out that hereunto we have assumed that the medium is a polarizable
and magnetizable insulator one. In this case the operator �P defined by (8) is the electric
polarization density and ∂ �P

∂t
is the current density induced in the medium due to the electric

polarization. When we are concerned with a conductor magnetodielectric medium the fields
�P and �D in (18) may not be interpreted as the electric polarization and displacement fields
and the quantity ∂ �P

∂t
in the Maxwell equation (19), which can be rewritten as

ε0
∂ �E
∂t

+
∂ �P
∂t

= ∇ × �H, (48)

is not merely the current source created by the electric polarization but is the sum of the free
current density, due to the motion of the free charges, and the current due to the polarizability
of the medium. In this case if we compute ḋν(�k, �q, t) from (23) and substitute it into (8),
instead of the constitutive equation (26), we obtain the linear responsive relation

∂Pi(�r, t)
∂t

= JNi(�r, t) ±
∫ |t |

0
dt ′

∫
d3r ′Qij (�r, �r ′, |t | − t ′)Ej (�r ′,±t ′), (49)

10



J. Phys. A: Math. Theor. 41 (2008) 275402 M Amooshahi and F Kheirandish

where now

Q(�r, �r ′, t) =
⎧⎨
⎩

8π

h̄c3

∫ ∞

0
dωω3 cos ωt

∫
d3r ′′[f (ω, �r, �r ′′) · f t (ω, �r ′, �r ′′)] t > 0

0 t � 0
(50)

is ε0
∂χe(�r, �r ′,t)

∂t
+σ(�r, �r ′, t), with χe and σ respectively the electric susceptibility and conductivity

tensors of the medium and

JNi(�r, t) = ∂PNi

∂t
= −ı

3∑
ν=1

∫
d3�q√
(2π)3

∫
d3�k

∫
d3r ′ω�kfij (ω�k, �r, �r ′)

× [dν(�k, �q, 0) e−ıω�k t+i�q. �r ′ − h.c.]vj
ν (�q) (51)

is a noise current density. In this case the explicit forms of the electromagnetic field are clearly
the same as the relations (43)–(47) with the exception that we should replace ρε̂(�k, ρ) by
ρε̂(�k, ρ)+ σ̂ (�k, ρ) where σ̂ is the transformation introduced in (38) for the conductivity tensor
σ .

5. Summary

By modeling an anisotropic and inhomogeneous magnetodielectric medium with two
independent quantum fields, namely E and M quantum fields, we could investigate
electromagnetic field quantization in the presence of such a medium consistently. The electric
and magnetic susceptibility tensors χe and χm of the medium were introduced in terms
of the coupling tensors which couple the electromagnetic field to E and M quantum fields
respectively. The explicit spacetime dependence of the noise polarizations was obtained in
terms of the ladder operators of the medium and the coupling tensors as a consequence of
Heisenberg equations. In this approach, both the Maxwell and constitutive equations were
obtained as Heisenberg equations of the total system. In the limiting case, i.e., when there is
no medium, this approach tends to the usual quantization of the electromagnetic field in free
space. Also when the medium approaches a nonabsorptive one, the noise polarizations tend
to zero and this quantization scheme is reduced to the known quantization in such a medium.
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